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ABSTRACT

Advances by experimental research in the USA toward an improved understand-
ing of property changes in steel by elevated temperature (™ 288°C) irradiation
are summarized. Four areas of investigation are reviewed including the
confirmation and demonstration of guidelines for radiation resistant steels, the
isolation of metallurgical factors contributing to variable radiation embrittle-
ment sensitivity, the qualification of in situ heat treatments for periodic vessel
embrittlement relief, and the correlation of notch ductility and fracture
toughness changes with irradiation.

Overall, the current state of the art provides both a high capability for tailoring
steels for radiation service in new vessel construction and a promising method
for controlling radiation embrittlement buildup in existing vessel construction.

Document is available from:

GFO Sales Program which is &

part of U.S. Nuclear Regulatory
Commission. The price of report is
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PREFACE

The objective of this document is to provide an overview of recent USA radiation
effects investigations on reactor vessel steels and primary research accomplish-
ments. The report was prepared at the invitation of the International Atomic
Energy Agency and was one of a group of reports to the 1981 Specialists' Meeting
on Irradiation Embrittlement and Surveillance of Reactor Pressure Vessels.
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STATUS OF KNOWLEDGE OF RADIATION EMBRITTLEMENT IN

USA REACTOR PRESSURE VESSEL STEELS

A. INTRODUCTION

Recent USA studies on radiation embrittlement development in pressure vessel
materials have focused on four areas of investigation. One area of research
effort was the confirmation and demonstration of the metallurgical requirements
for improved (radiation resistant) steels. Primary questions addressed were the
adequacy of new material specifications and guidelines and the ability of ecurrent
technology to routinely produce highly radiation resistant plates, forgings and
weld deposits. Efforts in the other areas of study were in support of early (pre-
1972) pressure vessel construction and had the common objective of improving
the understanding of radiation embrittlement behavior and its control. Here, one
series of investigations probed variable radiation sensitivity factors in depth. A
second series evaluated postirrcdiation heat treatment as a promising method of
embrittlement relief. A third group of continuing studies investigated the
correlation of notch duectility and fracture toughness changes with irradiation. In
this case, the intent was to improve the understanding of the engineering
significance of notch ductility changes with neutron exposure and to enhance the
usefulness of currently available notech duectility data banks for Code and
Standards applications.

The purpose of this report is to present an overview of the USA studies in the
primary areas of investigation and to summarize the main observations and
determinations.

B. DEMONSTRATION TESTS OF IMPROVED STEEL PRODUCTION

The radiation resistance of steels produced overseas was the general focus of
attention in recent demonstration test studies. Interest was prompted by the use
of these steels in certain USA reactor vessels and the concern that the use of
raw materials from sources other than those employed in USA steel production
could introduce different impurity element concentrations (or ratios) with a
subsequent impact on radiation sensitivity characteristies.

Supplemental USA specifications for improving the irradiation serviceability of
steels and welds place greater restrictions on allowable contents of copper,
phosphorus, sulfur and vanadium impurities than the parent, i.e., primary,
specifications. The express intent of the copper and phosphorus restrictions is to
improve radiation resistance whereas the intent of the sulfur and vanadium
limitations is to elevate the preservice upper shelf level for a greater toughness
reserve against irradiation degradation. Supplemental specifications for A533-B
and A508 Class 2 and Class 3 steels limit the maximum copper content to
0.10%Cu (heat analysis) and the maximum phosphorus content to 0.012%P for best
radiation resistance [l and 2]. The merit of the supplemental specifications has
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been firmly established experimentally for USA steel production (3]. Experi-
mental tests of comparable "low" copper, "low" phosphorus steels from overseas
production however have been insufficient in number to permit a broad assess-
ment of the adequacy of the USA supplemental specifications for these mate-
rials.

In October 1977, the IAEA International Working Group on Reliability of Reactor
Pressure Components (IWG-RRPC) [4] initiated a research program having the
objectives of demonstrating that {(a) careful specification of reactor steels can
eliminate the problem of potential steel failure due to neutron irradiation
effects, and that (b) knowledge has advanced to the point where steel
manufacture and welding technology can routinely produce steel vessels of
high radiation resistance. Materials obtained for the program included plates,
forgings and welds from the Federal Republic of Germany (FRG), France and
Japan (Table 1).

The Naval Research Laboratory (NRL) is participating in the ING-RRPC study
with a special interest in comparing overseas "improved" production against USA
production. Its initial irradiation evaluations of the materials using Charpy-V
(C_) and fatigue precracked Charpy-V (PCC_ ) test methods for notch ductility
and dynamic fracture toughness (K.) were completed this year [5]. NRL
observations on material transition temperature elevations (C_-41J index) are
compared in Figure 1 to prior observations on embrittlement susceptibility for
USA materials [3]. NRL findings on K, change with irradiation generally
support the Cv observations and are discussed later.

In Figure 1 the IWG-RRPC program materials (0.0l to 0.07%Cu) are found to
perform as well as the low copper (£0.10%Cu) materials representing improved
USA production. Thus, the results comprise a successful demonstration test of
the adequacy of the USA supplemental specifications. Equally important, the
combined data add confidence to the use of NRC Regulatory Guide 1.99 [6] for
predicting radiation embrittlement to low copper content vessel material pro-
duced overseas.

An A533-B steel plate (HSST 03) representing USA melt practice was also
included in the IWNG-RRPC material investigations as a reference. 3esults for
this plate are shown in Figure 1 and illustirate well the detrimental effect of a
0.129%Cu content compared to 0.01 to 0.07%Cu contents.

C. INVESTIGATIONS OF VARIABLE RADIATION SENSITIVITY

One USA study (NRL) investigated the interaction of nickel alloying and copper
impurities in radiation sensitivity development [7]. An interaction first became
suspect from relative embrittlement trends for high nickel, high enpper content
and low nickel, high copper content welds. Additional indications were found
in summary data comparisons for A533-B steel (0.4 to 0.7%Ni) and A302-B steel
(<<0.4%Ni) [9]. Because high nickel content welds with low copper contents can
show good radiation resistance as illustrated in Figure 2, a direct contribution of
nickel (up to 1%Ni) to material radiation sensitivity has been diseounted {3].
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Table 2 describes the materials matrix developed to test the interaction. The
eight composition variations (A302-B base) were produced from two split
laboratory melts. Plates rather than welds were studied for simplicity. Heat
treatment cooling rates for the 12.7 mm thick plates simulated cooling rates of
152 mm thick plates at the quarter thickness for matching microstructures. C
notch ductility properties of melt 6 are compared in Figures 3 and 4. Results of
initial NRL comparisons of these mate;z'ial after 288C irradiation are lgiven i
Table 3 [7]. The neutron fluence (n/em”, E>1 MeV) was about 2.5 x 10 "n/em”.
Referring to the data for plates 6B and 6C, a detrimental effect on radiation
resistance of a 0.7%Ni content compared to a 0.28%Ni content is clearly shown.
Likewise, the data for plates 5C and 5D from melt 5 indicate a greater transition
temperature elevation with the greater of the two nickel contents (Table 4). The
combined results are taken as a tentative confirmation of the suspect nickel-
copper interaction. Irradiation assessments of the materials are continuing and
include determinations of their relative response to postirradiation heat treat-
ment (recovery). Additional (follow-on) investigations for the NRC are exploring
the effects of combined copper, nickel and phosphorus contents as well as the
effects of other impurity element-alloying element combinations on radiation
sensitivity (10]. The material matrix for assessing the former is illustrated in
Table 5; initial radiation comparisons are expected in early 1982.

Concurrent with the above, at least two reviews of data banks on irradiated
steels and welds were made (or initiated) in the USA in the interest of
identifying possible sensitivity factors by computer analysis. The Metal Proper-
ties Council (MPC) for example performed a survey and compilation of test
reactor and power reactor (survillance) irradiation data for vessel steels that was
available as of November 1977. Its report, "Prediction of the Shift in the
Brittle/Ductile Transition Temperature of LWR Pressure Vessel Materials”" now
in publication clearly shows the importance of copper as a primary variable in
radiation sensitivity development. Essentially a 1:1 relationship between C_ 68J
and C_ 4l1J transition temperature increases by irradiatation was also found.” The
analysis concludes that the C_ 41J transition temperature elevation provides a
more religble means for measuring irradiation behavior than the C_ 68J
transition elevation for the type steels surveyed. The ASTM Committee 10 on
Nuclear Technology and Applications (Subcommittee E10.02) is in the process of
developing a new (proposed) recommended practice for predicting neutron
radiation damage to reactor vessel materials wherein one primary reference
document will be the MPC survey report.

Independently, Combustion Engineering Corporation (CE) initiated an effort for
the Electric Power Research Institute (EPRI) in late 1979, with objectives of
maintaining and improving capabilities to prediet the irradiation behavior of
reactor vessel materials, The studies are building upon prior CE investigations
by Varsik and Byrne [11] which evolved a model relating embrittlement susecep-
tibility to material composition. The transition temperature relationship devel-
oped by their investigation is:

A NDTTyorM = F (Chemistry Ratio x Cu)
9

wheri ANDT is the transition temperature normalized to a fluence of 3 x 10l
n/em® and where the chemistry ratio is the value of:
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Table 2 - Materials Matrix For Testing Ni-Cu Interaction
(Laboratory Split Melts; A302-B Base Composition)

Composition (wt-—%)a

Melt Cast Plate Ni Cu Si
NRL 5 A 0.05° 0.05° 0.20
B 0.30 0.05° 0.20
i C 0.30 0.15 0.20
| D 0.70 0.15 0.20
NRL 6 A 0.05° 0.30 0.20
B 0.30 0.30 0.20
o 0.70 0.30 0.20
D 0.70 0.30 0.35

a'rarget value for melting operations

bMaximum value
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Table 3 - Postirradiation Notch Ductility Observations
(Melt NRL 6)

(v 2.6 x 1012 n/am? at 288°C)

Plat:ea Ni Cv 41J Increase CV Upper Shelf
(Wt-%) ( 4°) Decrease (A J)
6A 0.05 86 30
6B 0.30 8l 30
6C 0.70 108 48
6C 0.70 (+0.35%8i) 103 41

30.28% Cu, 0.22% Si

PR VT
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Table 4 - Postirradiation Notch Ductility Observations
(Melt NRL 5)

e . s .. o o v A

2.4 x 101 n/cm® at 288°C)

Plate® Ni Cv 413 Increase C v opper Shelf
(wt-%) (4 %) Decrease (A J)
5A 0.05 17 A
; 5B 0.30 17 ~vo0
5C 0.30 (+0.16% Cu) 64 g
5D 0.70 (+0.16% Cu) 89 ~o0

30.005% Cu, 0.21% Si

e T Tt o e
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Table 5 - Materials Matrix For Testing Ni-Cu-P Interactiona
(Laboratory Split Melts; A302-B Base Composition)

Melt Cast/Plate Composition (wt. - %)b
Number Number Ni Cu P
7 A 0.70 0.05 0.005
B 0.70 0.05 0.015
C 0.70 0.05 0.026
8 A 0.70 0.30 0.005
B 0.70 0.30 0.015
C 0.70 0.30 0.026

aCooperative effort by NRL and HEDL

Target value for melting operations
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. 1.5Ni +Si+0.5C-0.5 (Mn-0.5)
atomiec percent [ 0.5+ 0.5Mo ] x Cu

Note the contrast with the general equation for transition temperature elevation
given by the NRC Regulatory Guide 1.99:

NDT ~

In this case the maximum value of transition temperature elevation is limited
depending on the fluence level.

1/2
ART = [40 + 1000 (%Cu - 0.08) + 5000 (%P ~ 0.008)] [‘P /lO19

Finally recent studies of variable radiation sensitivity directed some attention to
the possibility for a saturation of radiation embrittlement at neutron exposure
levels expected in service. This possibility was first tendered by Westinghouse
[12] on the basis of certain power reactor surveillance data and represents a
departure from test reactor data trends with fluence. EPRI has pursued this
question further and reported to the 1981 ASTM EI0 Minisymposium on Structural
Materials Irradiation Study Programs that, tentatively, it has concluded that
A533-B steel and weldments containing nickel alloying do not saturate at the
fluence levels of interest. Its analysis suggests, however, that the rate of
material embrittlement under irradiation may be a function of time at tempera-
ture. Experimental irradiations aimed at fully resolving this important question
have been undertaken by the NRC.

D. POSTIRRADIATION HEAT TREATMENT FOR EMBRITTLEMENT RELIEF

Postirradiation heat treatment (annealing) as a method for the periodic embrit-
tle ment relief of reactor vessels is receiving increasing interest in the USA.
The method offers one possible solution to high embrittlement levels projected
for high copper content welds in several older reactor vessels and is being
studied extensively by NRL for the NRC [13 and 14] and by Westinghouse for the
EPRI {15] .

Earlier investigations indicated that temperatures of 399°C or higher will be
required if an anneal is to be sufficiently effective in terms of noteh duetility
recovery [16]. More recent efforts focused on material behavior upon return to
service, i.e., after the anneal. Obviously, the ultimate test of the potential of
the method rests with properties behavior under irradiation (I), annealing (A) and
reirradiation (R) conditions.

NRL has reported the IAR performance of two weld deposits produced commer-
cially and containing 0.35%Cu an% 0.71%Ni [13,14]. The study was designed to
test the ability of periodic 399 C-168 hour heat treatments to hold notch
ductility changes below Code-allowable limits and to determine and compare
material reembrittlement rates upon reirradiation. Two series of experiments
have been conducted. The more recent series included compact tension (CT)
specimens for fracture toughness (K.) determinations by the single specimen
compliance technique and Jintegral assessment procedures as wellasC v specimens.
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In addition, selected specimen groups were carried through two full cyeles of
annealing and reirradiation. The results are summarized in Figures 5 and 6. The
data trends with annealing and reirradiation versus the trends without annealing
verify that the method can be very effective in reducing the build up of
irradiation effects. "Embrittlement arrest" was also found in the JAR perform-
ance of the CT specimens [14].

Closer inspection of the C_ data reveals that the response of upper shelf proper-
ties to annealing, i.e., percent recovery, is different from that of transition
temperature properties. Also, comparisons of notch ductility and tensile
property trends with annealing and reirradiation reveal parallels between transi-
tion temperature change and yield strength change and between upper shelf
change and tensile ductility change (see Table 6). Furthermore, the IAR data in
Figures 5 and 6 show that the rate of embrittlement after annealing initially is
greater than the rate of embrittlement of nonannealed material. The trends
suggest that the "damage" most readily introduced into the material (that
produced early in radiation service) is also that "damage" most readily removed
by the anneal. This projection is based, in part, on the similarity of radiation
embrittlement rates observed for the annealed material and the virgin material.
In-depth studies of reembrittlement path are now underway.

E. CORRELATION OF FRACTURE TOUGHNESS CHANGE WITH
IRRADIATION

Tentative correlations of notch duectility and fracture toughness change with
2887C irradiation are beginning to evolve from USA studies of relative Cv versus
PCC, and relative C_ versus CT test behavior [14 and 17].

Figure 7 presents a comparison of postirradiation transition temperature eleva-
tions indexed by the 4iJ temperature [C_ method] and the KJ 100 MPavm
temperature (PCC_ method). The materifls represented are the IWG-RRPC
program steels [5] %ind the NRL-EPRI RP886-2 program steels [18]. Considering
the number of specimens available for each test condition (limited), the
independent measures of trans&tion temperature change are in exceptionally good
agreement (typically within 15°C). A slight bias toward & higher K, 100 MPam
transition elevation by irradiation is seen overall. The primary exc'tlaption to this
general pattern of correspondence is a forging (EPRI Code BCB). In this case,
the K, data for preirradiation and postirradiation conditions (see Figure 8) depict
wide gcatter, making an estimation of average behavior difficult. Figure 9
provides the C_ data for the material for reference. Additional comparisons of
417 and 100 MPa/m transition temperature elevations are expected from
continuing programs.

One focus of evaluations with CT specimens is on fracture initiation toughness.
However, pressure vessel materials normally will exhibit elastic-plastic behavior
over a major portion of the brittle-to-ductile transition region. Accordingly, the
evaluations are also characterizing the slow-stable crack extension phenomenon
commonly described by the R curve (see Figure 10). The latter is useful not only
for defining crack initiation but also for assessing the potential for crack
instability [14]. The inferred toughness, K Je is computed from the relation:
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Fig. 9 - Charpy-V notch duectility of Forging BCB before and after 238°C
irradiation. Irradiated specimens were contained in the same reactor experiment
as the irradiated PCC,, specimens of Figure 8 [18].
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where :ﬁ? is the initiation toughness, E is Young's modulus and v is Poisson's
e

ratio. potential for crack instability is frequently being studied in terms of
a tearing modulus concept advanced by Paris and others [19]. The tearing

modulus, T, is defined as:
_ E (dJ
T= (o fz) da)

where o, is the flow stress and a is the crack length. Because of the power law
relationship of the R-curve, an average value of the tearing modulus, T ve? is
generally determined for the region between the dashed curves of Figure 1&.

Experimental comparisons of C_ and CT test methods have also revealed
similarities in their indications of irradiation effects. Specifically, the effects
of irradiation and of irradiation and annealing on the K. transition curve was
found to correspond closely with the effects on the C_ transition eurve measured
at the 41J index. In terms of upper shelf per‘f‘ormance trends however,
significant differences have been observed. For example, in NRL IAR studies
[14], essentially complete recovery in Cv energy level was found with 399°C
annealing but only partial recovery in T,y values. Also, T,;. shows an
inverse relationship with temperature (Figure 11) whereas the dx upper shelf
energy of the material studied was essentially constant with temperature. The
partial recovery in Tpyg was consistent with the flow stress trend but not witi
tensile ductility values. A correlation of the two test methods for a specific
temperature has been possible however (Figure 12). Loss and co-workers evolved
the correlation on the basis of eight nuclear vessel steels, with and without
irradiation, and spanning the C_ energy range expected in service. The
correlation has greatly enhanced the engineering signficance and usefulness of
C. data from reactor vessel surveillance. Additional details of the study are
obtainable from references 14 and 20.

F. SUMMARY

USA studies of radiation embrittlement to reactor vessel materials have made
significant progress in the last three years. Reported findings and newly
developed data trends contribute on a broad front to the base technology.
Demonstration tests which showed the worldwide range of applicability of new
specifications and guidelines for tailoring steels for radiation resistance and
correlation tests which compared noteh ductility and fracture toughness changes
with irradiation are illustrative of the range of studies conducted.
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- Fig. 11 - Variation of the average tearing modulus, T , With temperature for a
submerged are weld (0.35%Cu, 0.7%Ni) in the unirrélYa ed, irradiated, annealed
and annealed-and-reirradiated conditions [14] .
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Fig. 12 - Correlation between C_ upper shelf energy and the average value of
tearing modulus, T AVG? for a cratk extension less than 1.5 mm [14,20].
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